OSP-E..BHD Belt Actuator with Integrated Guide

Ball Bearing Guide Roller Guide

Content

Description	Page
Overview	12
Versions with Ball Bearing Guide	
Technical Data	15
Dimensions	18
Order Instructions	24
Version with Roller Guide	
Technical Data	20
Dimensions	23
Order Instructions	24

11

Belt Actuator with Integrated Guide for Heavy Duty Applications

The latest generation of high capacity actuators, the OSP-E..BHD series combines robustness, precision and high performance. The aesthetic design is easily integrated into any machine constructions by virtue of extremely adaptable mountings.

Belt Actuator with Integrated Guide - selective with Ball Bearing Guide or Roller Guide

Advantages:

- Accurate Path and Position Control
- High Force Output
- High Speed Operation
- High Load Capacity
- Easy Installation
- Low Maintenance
- Ideal for Multi-Axis Applications

Features:

- Integrated Ball Bearing Guide or Integrated Roller Guide
- Diverse Range of Multi-Axis Connection Elements

Version with Intergrated Ball Bearing Guide

- Diverse Range of Accessories and Mountings
- Complete Motor and Control Packages
- Optional Integrated Planetary Gearbox
- Special Options on Request

High Precision (option)

Drive Shaft Versions

Steel Runner Block with Integrated Scraper System and Grease Nipples

Corrosion Resistant Steel Sealing Band

Permanent Magnet for
Contactless Position Sensing
Rollers on Needle Bearings
For Smooth Operation up to $10 \mathrm{~m} / \mathrm{s}$.

BI-PARTING Version
for perfectly synchronised
bi-parting movements.

MULTI-AXIS SYSTEMS

A wide range of adapter plates and intermediate drive shafts simplify engineering and installation

Drive Shaft OPTIONS

Hollow Shaft with Keyway

OPTION
Integrated planetary gearbox

- Highly compact and rigid solution fully integrated in the drive cap housing
- Purpose designed for the BHD series
- Available with three standard ratios (3, 5 and 10)
- Very low backlash
- A wide range of available motor flanges

The dovetailed mounting rails of the new linear actuator expand its function into that of a universal system carrier.
Modular system components are simply clamped on.

OSP-E..BHD Belt Actuator with Integrated Guide

Standard Versions

Drive Shaft with Clamp Shaft

Drive Shaft with Plain Shaft

Actuating Direction

Important in parallel operations, e.g.
with intermediate drive shaft

Options

Tandem

For higher moment support

Bi-parting Version

For perfectly synchronised bi-parting movements.

Drive Shaft with Clamp and Plain Shaft
For connections with intermediate drive shaft

Hollow Shaft with Keyway

For close coupling of motors and external gears

Integrated Planetary Gearbox
For compact installation and very low backlash

Accessories

Motor Mountings

End Cap Mounting

For mounting the actuators on the end cap.

Profile Mounting

For supporting long actuators or mounting the actuators on dovetail grooves

Magnetic Sensors Type RS / ES

For contactless position sensing of end stop and intermediate carrier positions.

Multi-Axis-Systems
For modular assembly of actuators up to multi-axis systems.

Standard Versions

- Belt Actuator with Integrated Ball Bearing Guide
- Drive Shaft with Clamp Shaft or PlainShaft
- Choice of Motor Mounting Side
- Dovetail Profile for Mounting of Accessories and the Actuator itself

Options

- Tandem Version for Higher Moments
- Bi-parting Version for Synchronised Movements
- Integrated Planetary Gearbox
- Drive Shaft with
- Clamp Shaft and Plain Shaft
- Hollow Shaft with Keyway
- Special Drive Shaft Versions on Request

Characteristics

	Symbol	Unit	Description
General Features			
Series			OSP-E..BHD
Name			Belt Acutator with Integrated Ball Bearing Gear
Mounting			see drawings
Ambient Temperature Range	$\begin{aligned} & \vartheta_{\text {min }} \\ & \vartheta_{\text {max }} \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -30 \\ & +80 \end{aligned}$
Weight (mass)		kg	see table
Installation			in any position
Slotted profile			Extruded Anodized Aluminium
Belt			Steel-corded Polyurethane
Pulley			Aluminium
Guide			Ball Bearing Guide
.ত- Guide Rail			Hardened Steel Rail with High Precision, Accuracy Class N
			Steel Carrier with Integrated Wiper System, Grease Nipples, Preloaded $0.02 \times$ C, Accuracy Class H
Sealing Band			Hardened, Corrision Resistant Steel
Screws, Nuts			Zinc Plated Steel
Mountings			Zinc Plated Steel and Aluminium
Protection Class		IP	54

Weight (mass) and Inertia

Series	Weight (mass) [kg]			Inertia [$\times 10^{\mathbf{- 6}} \mathbf{~ k g m}^{\mathbf{2}}$]		
	at stroke 0 m	add per metre stroke	moving mass	at stroke 0 m	add per metre stroke	per kg mass
OSP-E20BHD	2.8	4.0	0.8	280	41	413
OSP-E25BHD	4.3	4.5	1.5	1,229	227	821
OSP-E32BHD	8.8	7.8	2.6	3,945	496	1459
OSP-E50BHD	26.0	17.0	7.8	25,678	1,738	3,103
OSP-E20BHD*	4.3	4.0	1.5	540	41	413

OSP-E25BHD*	6.7	4.5	2.8	2,353	227	821
OSP-E32BHD* *	13.5	7.8	5.2	7,733	496	1,459
OSP-E50BHD*	40.0	17.0	15.0	49,180	1,738	3,103

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/EG.

Installations Instructions

Use the threaded holes in the end cap for mounting the actuator. Check if profile mountings are needed using the maximum allowable unsupported length graph on page 17. At least one end cap must be secured to prevent axial sliding when profile mountings are used.

Maintenance

Depending on operating conditions, inspection of the actuator is recommended after 12 months or 3000 km operation. Please refer to the operating instructions supplied with the actuator.

Sizing of Actuator

The following steps are recommended:

1. Determination of the lever arm length I_{x}, I_{y} and I_{z} from m_{e} to the centre axis of the actuator.
2. Calculation of the load F_{x} or F_{y} to the carrier caused by m_{e} $\mathrm{F}=\mathrm{m}_{\mathrm{e}} \cdot \mathrm{g}$
3. Calculation of the static and dynamic force F_{A} which must be transmitted by the belt.
$\mathrm{F}_{\text {Ahorizontal) }}=\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{0}$

$$
F_{\text {A(vertical) }}=F_{g}+F_{a}+F_{0}
$$

$$
\begin{aligned}
& =m_{g} \cdot a+M_{0} \cdot 2 \pi / U_{Z R} \\
& =F_{g}+F_{a}+F_{0} \\
& =m_{g} \cdot g+m_{g} \cdot a+M_{0} \cdot 2 \pi / U_{Z R}
\end{aligned}
$$

4. Calculation of all static and dynamic moments M_{x}, M_{y} and M_{z} which occur in the application. $M=F \cdot I$
5. Selection of maximum permissible loads via Table T3.
6. Calculation and checking of the combined load, which must not be higher than 1.
7. Checking of the maximum torque that occurs at the drive shaft in Table T2.
8. Checking of the required action force F_{A} with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

। = distance of a mas s in the x-, y - and z-direction from the guide [m]
$m_{e}=$ external moved mass [kg]
$m_{\text {LA }}=$ moved mass of actuator [kg]
$m_{g}=$ total moved mass $\left(m_{e}+m_{\llcorner A}\right)[k g]$
$F_{x / y}=$ load excerted on the carrier in dependence of the installation position [N]
$\mathrm{F}_{\mathrm{A}}=$ action force $[\mathrm{N}]$
$\mathrm{M}_{0}=$ no-load torque $[\mathrm{Nm}]$
$\mathrm{U}_{\mathrm{ZR}}=$ circumference of the pulley (linear movement per revolution) [m]
$\mathrm{g}=$ gravity $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$a_{\text {max. }}=$ maximum acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$

Performance Overview

(T1)

Characteristics	Unit	Description			
Series		OSP-E2OBHD	OSP-E25BHD OSP-E32BHD	OSP-E50BHD	
Max. Speed	$[\mathrm{m} / \mathrm{s}]$	$3^{1)}$	$5^{1)}$	$5^{1)}$	$5^{1)}$
Linear Motion per Revolution of Drive Shaft	$[\mathrm{mm}]$	125	180	240	350
Max. rpm on Drive Shaft	$\left[\mathrm{min}^{-1}\right]$	2,000	1,700	1,250	860
Max. Effective $<1 \mathrm{~m} / \mathrm{s}:$ $[\mathrm{N}]$ 550 1,070 1,870 Action Force $1-3 \mathrm{~m} / \mathrm{s}:$ $[\mathrm{N}]$ 450 890 1,560 $\mathrm{~F}_{\mathrm{A}}$ at Speed	$>3 \mathrm{~m} / \mathrm{s}:$	$[\mathrm{N}]$	-	550	1,030
No-load Torque	$[\mathrm{Nm}]$	0.6	1.2	2.2	1,940
Max. Acceleration/Deceleration	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	50	50	50	50
Repeatability	$[\mathrm{mm} / \mathrm{m}]$	± 0.05	± 0.05	± 0.05	± 0.05
Max. Standard Stroke Length	$[\mathrm{mm}]$	$5,760^{2)}$	$5,700^{2)}$	$5,600^{2)}$	$5,500^{2)}$

${ }^{1)}$ up to $10 \mathrm{~m} / \mathrm{s}$ on request
2) longer strokes on request

Maximum Permissible Torque on Drive Shaft
Speed / Stroke

OSP-E20BHD				OSP-E25BHD				OSP-E32BHD				OSP-E50BHD			
$\begin{aligned} & \text { Speed } \\ & {[\mathrm{m} / \mathrm{s}]} \end{aligned}$	$\begin{aligned} & \text { Torove } \\ & {\left[\begin{array}{l} \mathrm{Nm}] \end{array}\right]} \end{aligned}$	$\begin{aligned} & \text { stroke } \\ & {[\mathrm{m}]} \end{aligned}$	$\begin{aligned} & \text { Torave } \\ & {\left[\begin{array}{ll} \mathrm{Nm}] \end{array}\right]} \end{aligned}$	$\begin{aligned} & \text { speed } \\ & {[\mathrm{m} / \mathrm{s}]} \end{aligned}$	$\begin{aligned} & \text { Torque } \\ & {[\mathrm{Nm}]} \end{aligned}$	$\begin{aligned} & \text { Stroke } \\ & {[\mathrm{m}]} \end{aligned}$	$\begin{aligned} & \text { Torave } \\ & {[\mathrm{Nm}]} \end{aligned}$	$\begin{gathered} \text { Snoed } \\ {[\mathrm{m} / \mathrm{s}]} \end{gathered}$	$\begin{aligned} & \text { Torove } \\ & {\left[\begin{array}{l} \mathrm{Nm}] \end{array}\right]} \end{aligned}$	$\begin{aligned} & \text { Stoke } \\ & {[\mathrm{m}]} \end{aligned}$	$\begin{aligned} & \text { Torave } \\ & {[\mathrm{Nm}]} \end{aligned}$	$\begin{gathered} \text { Soned } \\ {[\mathrm{m} / \mathrm{s}]} \end{gathered}$	$\begin{aligned} & \text { Torque } \\ & {[\mathrm{Nm}]} \end{aligned}$	$\begin{aligned} & \text { Stokele } \\ & {[\mathrm{m}]} \end{aligned}$	$\begin{aligned} & \text { Topque } \\ & {\left[\begin{array}{l} \mathrm{Nm}] \end{array}\right]} \end{aligned}$
1	11	1	11	1	31	1	31	1	71	1	71	1	174	1	174
2	10	2	11	2	28	2	31	2	65	2	71	2	159	2	174
3	9	3	8	3	(25)	3	31	3	59	3	60	3	153	3	138
4		4	7	4	23	4	25	4	56	4	47	4	143	4	108
5		5	5	5	22	5	(21)	5	52	5	38	5	135	5	89

Important:

The maximum permissible torque on the drive shaft is the lowest value of the speed- or stroke-dependent torque value.

Example above:

OSP-E25BHD, stroke 5 m , required speed $3 \mathrm{~m} / \mathrm{s}$ from table T 2 speed $3 \mathrm{~m} / \mathrm{s}$ gives 25 Nm and stroke 5 m gives 21 Nm . Max. torque for this application is 21 Nm .

Maximum Permissible Loads					
Series	Max. Applied Load			Max. Moments [Nm]	
	$\mathrm{F}_{\mathrm{y}}[\mathrm{N}]$	$\mathrm{F}_{\mathrm{z}}[\mathrm{N}]$	M_{x}	M_{y}	$\mathrm{M}_{\mathbf{z}}$
OSP-E20BHD	1,600	1,600	21	150	150
OSP-E25BHD	2,000	3,000	50	500	500
OSP-E32BHD	5000	10,000	120	1,000	1,400
OSP-E50BHD	12,000	15,000	180	1,800	2,500

Loads, Forces and Moments

Combined Loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.
The maximum permissible loads must not be exceeded.

Equation of Combined Loads

$\frac{F_{y}}{F_{y}(\max)}$ $+$
 $+\frac{M_{x}}{M_{x}(\max)}$ $+\frac{M_{y}}{M_{y}(\max)}+$ $+\frac{M_{z}}{M_{z}(\max)} \leq 1$

The total ofthe loads must not exceed >1 under any circumstances.

Maximum Permissible

 Unsupported Length
Stroke Length

The stroke lengths of the actuators are available in multiples of 1 mm up to $5,700 \mathrm{~mm}$.

Other stroke lengths are available on request. The end of stroke must not be used as a mechanical stop.
Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm .

The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo systems.
For advice, please contact your local Parker technical support department.

* For Bi-parting version the max. load (F) is the total load of both carriers
$F=F_{\text {carrier 1 }}+F_{\text {carrier } 2}$
$k=$ Max. permissible distance between
mountings/Profile Mounting for a given load F.
When loadings are below or up to the curve in the graph below the deflection will be max. 0.01 \% of distance k.

The distance $\left(l_{x}, l_{y}, I_{z}\right)$ for calculation of moments relates to the centre axis of the actuator. Bending moments are calculated from the centre of the actuator and F indicates actual force.

Maximum Permissible Unsupported Length Placing of Profile Mounting

$$
\begin{aligned}
& M=F \cdot I[N m] \\
& M_{x}=M_{x \text { static }}+M_{x \text { dynamic }} \\
& M_{y}=M_{y \text { static }}+M_{y \text { dynamic }} \\
& M_{z}=M_{z \text { static }}+M_{z \text { dynamic }}
\end{aligned}
$$

-

OSP-E..BHD

Linear Drive with Toothed Belt and Integrated Recirculating Ball Bearing Guide - Basic Unit

Hollow shaft with Keyway (Option)
Dimension Table [mm]

[^0]* Note: The mechanical end position must not be used as a mechancial end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm . Order stroke $=$ required travel $+2 \times$ safety distance. The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local Parker representative.

Option Tandem -Series OSP-E.. BHD

Option-Bi-Parting -Series OSP-E.. BHD

** Order stroke $=$ required travel $+\mathrm{KM} \min +2 \times$ safety distance

Dimension Table [mm]

Series	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{E}	$\mathbf{G x H}$	\mathbf{J}	\mathbf{K}	\mathbf{M}	\mathbf{S}	\mathbf{V}	\mathbf{X}	$\mathbf{Y x Z Z}$	$\mathbf{C E}$	$\mathbf{C F}$	EC
EF	FB														
OSP-E2OBHD	185	76.5	73	18	$\mathrm{M} 5 \times 8.5$	155	21.1	27.6	67	51	30	$\mathrm{M} 5 \times 8$	38	49.0	60
OSP-E25BHD	218	88.0	93	25	$\mathrm{M} 5 \times 10$	178	21.5	31.0	85	64	40	$\mathrm{M} 6 \times 8$	42	52.5	79
OSP-E32BHD	262	112	116	28	$\mathrm{M} 6 \times 12$	218	28.5	38.0	100	64	40	$\mathrm{M} 6 \times 10$	56	66.5	100
OSP-E50BHD	347	147	175	18	$\mathrm{M} 6 \times 12$	288	43.0	49.0	124	90	60	$\mathrm{M} 6 \times 10$	87	92.5	158

Series	FH	KF	KM ${ }_{\text {min }}$	KM ${ }_{\text {empf. }}$	KN	KO	KP	KR	KS	KT	KUxKJ
OSP-E20BHD	36.0	42.5	180	220	27	18.0	25	$12_{\text {h7 }}$	12^{H7}	65.7	M6x8
OSP-E25BHD	39.5	49.0	210	250	34	21.7	30	$16_{\text {h7 }}$	16^{H7}	82.0	M8x8
OSP-E32BHD	51.7	62.0	250	300	53	30.0	30	$22^{\text {h7 }}$	22^{H7}	106.0	M10x12
OSP-E50BHD	77.0	79.5	354	400	75	41.0	35	$32_{\text {h7 }}$	32^{H7}	144.0	M12x19

(Other dimensions for KS and KB for special drive shafts on request - see order instructions.)

Features

- Highly Compact and Rigid Solutio Fully Integrated in the Drive Cap Housing
- Purpose Designed for the BHD Series.
- Available with three Standard Ratios (3, 5 and 10)
- Very Low Backlash
- Wide Range of Available Motor Flanges

Material: Aluminium (AL-H) / Steel (St-H)

Series OSP-E..BHD -
with Integrated Planetary Gearbox (Option)

Standard Version:

- Gearbox on Opposite Side to Carrier

Note: When ordering, specify model/Type of motor and manufacturer for correct motor flange.

Please contact your local Parker technical support for available motor flange.

Dimensions

Performance Overview

Characteristics	Symbol	Unit	Description		
Series			OSP-E25BHD	OSP-E32BHD	OSP-E50BHD
Ratio (1-stage)	i			3/5/10	
Max. Axial Load	$F_{\text {a max }}$	[N]	1,550	1,900	4,000
Torsional Rigidity (i=5)	$\mathrm{C}_{\text {t. } 21}$	[$\mathrm{Nm} / \mathrm{arcmin}$]	3.3	9.5	25.0
Torsional Rigidity (i=3/10)	$\mathrm{C}_{\mathrm{t} .21}$	[$\mathrm{Nm} / \mathrm{arcmin}$]	2.8	7.5	22.0
Torsional Backlash	J_{t}	[arcmin]		<12	
Linear Motion per Revolution of Drive Shaft		[mm]	220	280	360
Nominal Input Speed	$\mathrm{n}_{\text {nom }}$	[min^{-1}]	3,700	3,400	2,600
Max. Input Speed	$\mathrm{n}_{1 \text { max }}$	[min^{-1}]		6,000	
No-load Torque at Nominal Input Speed	T_{012}	[Nm]	<0.14	<0.51	<1.50
Lifetime		[h]		20,000	
Efficency	η	[\%]		>97	
Noise Level ($\mathrm{n}_{1}=3000 \mathrm{~min}^{-1}$)	$L_{\text {PA }}$	[db]	<70	<72	<74

Dimension Table [mm] and Additional Weight

Series	NA	NB	NC	Weight (mass) [kg]
OSP-E25BHD	49	43	76	2.6
OSP-E32BHD	62	47	92	4.9
OSP-E50BHD	80	50	121	9.6

Standard Versions

- Belt Acutator with Integrated Roller Guide
- Drive Shaft with Clamp Shaft or Plain Shaft
- Choice of Motor Mounting Side
- Dovetail Profile for Mounting of Accessories and the Actuator Itself

Characteristics

	Symbol	Unit	Description
General Features			
Series			OSP-E..BHD
Name			Linear Drive with Toothed Belt and Integrated Roller Guide
Mounting			see drawings
Ambient Temperature Range	$\begin{aligned} & \vartheta_{\min } \\ & \vartheta_{\max } \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -30 \\ & +80 \end{aligned}$
Weight (mass)		kg	see table
Installation			in any position
Slotted Profile			Extruded Anodized Aluminium
Toothed Belt			Steel-corded Polyurethane
Pulley			Aluminium
Guide			Roller Guide
$\bar{\sim}$ Guide Rail			Aluminium
© Track			High Alloyed Steel
\sum Roller Cartige			Steel rollers in Aluminium Housing
Sealing Band			Hardended, Corrision Resistant Steel
Screws, Nuts			Zinc Plated Steel
Mountings			Zinc Plated Steel and Aluminium
Protection Class		IP	54

Weight (mass) and Inertia

Series	Weight (mass) [kg]			Inertia [x 10-6 $\left.\mathbf{k g m}^{2}\right]$		
	at stroke 0 m	ad per metre stroke	Moving mass	at stroke 0 m	ad per metre stroke	Moving mass
OSP-E25BHD	3.8	4.3	1.0	984	197	821
OSP-E32BHD	7.7	6.7	1.9	3,498	438	1,459
OSP-E50BHD	22.6	15.2	4.7	19,690	1,489	3,103
OSP-E25BHD*	5.7	4.3	2.0	1,805	197	821
OSP-E32BHD	11.3	6.7	3.8	6,358	438	1,459
OSP-E50BHD*	31.7	15.2	9.4	34,274	1,489	3,103

* Version: Tandem and Bi-parting (Option)

Installation Instructions

Use the threaded holes in the end cap for mounting the actuator. Check if profile mountings are needed using the maximum allowable unsupported length graph on page 22. At least one end cap must be secured to prevent axial sliding when profile mountings are used.

Maintenance

Depending on operating conditions, inspection of the actuator is recommended after 12 months or 3000 km operation. Please refer to the operating instructions supplied with the actuator.

First Service Start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/ EG.

Performance Overview					(T1)
Characteristics		Symbol	Description		
Series			OSP-E25BHD	OSP-E32BHD	OSP-E50BHD
Max. Speed		[m/s]	10	10	10
Linear Motion per Rev Shaft	ution Drive	[m/s]	180	240	350
Max. rpm. Drive Shaft		[min^{-1}]	3,000	2,500	1,700
Max. Effective Action Force F_{A} at Speed	$<1 \mathrm{~m} / \mathrm{s}$:	[N]	1,070	1,870	3,120
	1-3 m/s:	[N$]$	890	1,560	2,660
	> 3-10 m/s:	[N]	550	1,030	1,940
No-load Torque		[Nm]	1.2	2.2	3.2
Max. Acceleration/Deceleration		[$\mathrm{m} / \mathrm{s}^{2}$]	40	40	40
Repeatability		[mm/m]	± 0.05	± 0.05	± 0.05
Max. Standard Stroke Length		[mm]	7,000	7,000	7,000

Maximum Permissible Torque on Drive Shaft
Speed and Stroke

OSP-E25BHD										OSP-E32BHD									
Speed	Torque	Stroke	Torque	Speed	Torque	Stroke	Torque	Speed	Torque	Stroke	Torque								
$[\mathrm{m} / \mathrm{s}]$	$[\mathrm{Nm}]$	$[\mathrm{m}]$	$[\mathrm{Nm}]$	$[\mathrm{m} / \mathrm{s}]$	$[\mathrm{Nm}]$	$[\mathrm{m}]$	$[\mathrm{Nm}]$	$[\mathrm{m} / \mathrm{s}]$	$[\mathrm{Nm}]$	$[\mathrm{m}]$	$[\mathrm{Nm}]$								
1	31	1	31	1	71	1	71	1	174	1	174								
2	28	2	31	2	65	2	71	2	159	2	174								
3	25	3	31	3	59	3	60	3	153	3	138								
4	23	4	25	4	56	4	47	4	143	4	108								
5	22	5	21	5	52	5	38	5	135	5	89								
6	21	6	17	6	50	6	32	6	132	6	76								
7	19	7	15	7	47	7	28	7	126	7	66								
8	18			8	46			8	120										
9	17			9	44			9	116										
10	16			10	39			10	108										

Important:

The maximum permissible torque on the drive shaft is the lowest value of the speed- or strokedependent torque value.

Example above:

OSP-E25BHD, stroke 5 m , required speed $3 \mathrm{~m} / \mathrm{s}$ from table T2 speed $3 \mathrm{~m} / \mathrm{s}$ gives 25 Nm and stroke 5 m gives 21 Nm . Max. torque for this application is 21 Nm .

Maximum Permissible Loads

Series	Max. applied load	Max. moments $[\mathbf{N m}]$		
	$\mathrm{F}_{\mathrm{y}}, \mathrm{F}_{\mathrm{z}}[\mathrm{N}]$	M_{x}	M_{y}	M_{z}
OSP-E25BHD	986	11	64	64
OSP-E32BHD	1,348	19	115	115
OSP-E50BHD	3,704	87	365	365

The following steps are recommended:

1. Determination of the lever arm length I_{x}, I_{y} and I_{z} from m_{e} to the centre axis of the actuator.
2. Calculation of the load F_{x} or F_{y} to the carrier caused by m_{e} $\mathrm{F}=\mathrm{m}_{\mathrm{e}} \cdot \mathrm{g}$
3. Calculation of the static and dynamic force F_{A} which must be transmitted by the belt.

$$
\begin{aligned}
\mathrm{F}_{\text {Alorizontal }} & =\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{0} \\
& =\mathrm{m}_{\mathrm{g}} \cdot \mathrm{a}+\mathrm{M}_{0} \cdot 2 \pi / U_{\mathrm{ZR}} \\
\mathrm{~F}_{\text {A(vertical) }} & =\mathrm{F}_{\mathrm{g}}+\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{0} \\
& =\mathrm{m}_{\mathrm{g}} \cdot \mathrm{~g}+\mathrm{m}_{\mathrm{g}} \cdot \mathrm{a}+\mathrm{M}_{0} \cdot 2 \pi / \mathrm{U}_{\mathrm{ZR}}
\end{aligned}
$$

4. Calculation of all static and dynamic bending moments M_{x}, M_{y} and M_{z} which occur in the application $\mathrm{M}=\mathrm{F} \cdot \mathrm{I}$
5. Selection of maximum permissible loads via Table T3.
6. Calculation and checking of the combined load, which must not be higher than 1 .
7. Checking of the maximum torque that occurs at the drive shaft in Table T2.
8. Checking of the required action force F_{A} with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

I = distance of a mass in the x-, y - and z-direction from the guide [m]
$m_{e}=$ external moved mass [kg]
$m_{\text {LA }}=$ moved mass of actuator [kg]
$\mathrm{m}_{\mathrm{g}}=$ total moved mass $\left(m_{\mathrm{e}}+\mathrm{m}_{\mathrm{LA}}\right)[\mathrm{kg}]$
$F_{x / y}=$ load excerted on the carrier in dependence of the installation position [N]
$\mathrm{F}_{\mathrm{A}}=$ action force $[\mathrm{N}]$
$M_{0}=$ no-load torque $[\mathrm{Nm}]$
$\mathrm{U}_{\mathrm{ZR}}=$ circumference of the pulley (linear movement per revolution) [m]
$\mathrm{g}=$ gravity $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$\mathrm{a}_{\text {max. }}=$ maximum acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$

Loads, Forces and Moments

Combined Loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.
The maximum permissible loads must not be exceeded.

Equation of Combined Loads

$\frac{F y}{F y(\max)}+\frac{F z}{F z(\max)}+\frac{M x}{M x(\max)}+\frac{M y}{M y(\max)}+\frac{M z}{M z(\max)} \leq 1$

The total of the loads must not exceed >1 under any circumstances.
$\mathrm{M}=\mathrm{F} \cdot \mathrm{I}[\mathrm{Nm}]$
$M_{x}=M_{x \text { static }}+M_{x \text { dynamic }}$
$M_{y}=M_{y \text { static }}+M_{y \text { dynamic }}$
$\mathrm{M}_{\mathrm{z}}=\mathrm{M}_{\mathrm{z} \text { static }}+\mathrm{M}_{\mathrm{z} \text { dynamic }}$

The distance $\left(l_{x}, l_{y}, I_{z}\right)$ for calculation of moments relates to the centre axis of the actuator. Bending moments are calculated from the centre of the actuator and F indicates actual force.

Maximum Permissible Unsupported Length

Stroke length

The stroke lengths of the actuators are available in multiples of 1 mm up to 5700 mm .

Other stroke lengths are available on request.
The end of stroke must not be used as a mechanical stop.
Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm .
The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo systems.

For advice, please contact your local Parker technical support department.

* For the bi-parting version the maximum load (F) complies with the total of the load at both carriers.
$F=F_{\text {carriage } 1}+F_{\text {carriage } 2}$
$k=$ Maximum permissible distance between mountings/mid-section support for a given load F.

If the loads are below or up to the curve in the graph the deflection will be max. 0.01 \% of distance k .

Maximum Permissible Unsupported Length Placing of Profile Mounting

Linear Drive with Toothed Belt and Integrated Roller Guide - Basic Unit OSP-E..BHD

Hollow Shaft with Keyway (Option)
Dimension [mm]

Dimension [mm]					
Series	KB^{*}	KC	KL	KT	$\mathrm{KU} \times \mathrm{KJ}$
OSP-E25BHD	16^{H7}	18.3	5	82	$\mathrm{M} 8 \times 8$
OSP-E25BHD	22^{H7}	24.8	6	106	$\mathrm{M} 10 \times 12$
OSP-E50BHD	$32^{\mathrm{H} 7}$	35.3	10	144	$\mathrm{M} 12 \times 19$

${ }^{1)}$ Note: The mounting holes for the coupling housing / motor flange / gearbox are located on the opposite side to the carrier (motor mounting standard). They also can be located on the same side as the carrier (motor mounting 180° standard).

* Note: The mechanical end position must not be used as a mechancial end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm . Order stroke $=$ required travel $+2 \times$ safety distance .
The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local Parker representative.

Option Tandem

** Order stroke $=$ required travel $+\mathrm{KM} \min +2 \times$ safety distance

Option-Bi-Parting

*** \quad Order stroke $=2 \times$ required travel $+K M$ min $+2 \times$ safety distance

Dimension Table [mm]

Series	A	B	C	E	GxH	J	K	M	S	V	X	YxZZ	CE	CF
OSP-E25BHD	218	88.0	93	25	M 5×10	178	21.5	31.0	85	64	40	M6x8	42	52.5
OSP-E32BHD	262	112	116	28	M6x12	218	28.5	38.0	100	64	40	M6x10	56	66.5
OSP-E50BHD	347	147	175	18	M6x12	263	43.0	49.0	124	90	60	M6x10	87	92.5
Series	EC	EF	FB	FH	KF	K $M_{\text {min }}$	KM ${ }_{\text {empf. }}$	KN	KO	KP	KR	KS	KT	KUxKJ
OSP-E25BHD	79	27	92	39.5	49.0	210	250	34	21.7	30	$16_{\text {h7 }}$	16^{H7}	82.0	M8x8
OSP-E32BHD	100	36	116	51.7	62.0	250	300	53	30.0	30	$22_{\text {h7 }}$	22^{H7}	106.0	M10x12
OSP-E50BHD	158	70	164	77.0	79.5	295	350	75	41.0	35	$32_{\text {h7 }}$	32^{H7}	144.0	M12x19

Other dimensions for KS and KB for special drive shafts on request - see other instructions.

Order Instructions	
Size of Actuator $\mathbf{2 0}$ Size 20 (only Type of actuator 6) $\mathbf{2 5}$ Size 25 $\mathbf{3 2}$ Size 32 $\mathbf{5 0}$ Size 50	

Type of Actuator	
$\mathbf{5}$	Belt Actuator with Integrated Roller Guide (for size 25, 32 and 50)
$\mathbf{6}$	Betl Actuator with Integrated Ball Bearing Guide

Carriage	
$\mathbf{0}$	Standard
$\mathbf{1}^{\star}$	Tandem
$\mathbf{2}^{\star}$	Bi-parting

OSP-E.. BHD as Parallel Actuator with Intermediate Drive Shaft MAS-..

OSP-E..60005-..	M
OSP-E..6010A-..	
OSP-E..60003-..	M
OSP-E..6010B-..	

4Δ
Drive shaft
Operating direction

Mounting Kit for Gear *					
Size	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{5 0}$	
A7	PS60	x^{2}	x^{1}		
A8	PS90			x^{1}	
A9	PS115				x^{1}
C0	LP050 / PV40-TA	x^{1}			
C1	LP070 / PV60-TA	x^{2}	x^{1}		
C2	LP090 / PV90-TA			x^{1}	
C3	LP120				x^{1}

x^{1} : Kit for Drive Shaft with clamp shaft (02 / 03 / 04 / 05)
x^{2} : Kit for Drive Shaft with plain shaft ($\mathrm{OA} / \mathrm{OB}$)

Info: Motor and gear mounting dimensions see page 191

Niro	
$\mathbf{0}$	Standard
$\mathbf{1}^{*}$	Niro Screws

[^1]** for sizes 25, 32 and 5

Magnetic Sensors *
see page 165 ff
0 without
$\mathbf{1}$ 1 pc. RST-K 2NO / 5 m cable
$\mathbf{2}$ 1 pc. RST-K 2NC / 5 m cable

$\mathbf{3}$	2 pc. RST-K 2NC / 5 m cable

4	2 pc. RST-K 2NC, 1 pc. RST-K 2NO / 5 m cable

$\mathbf{5}$	1 pc. RST-S 2NO / M8 plug
$\mathbf{6}$	

$\mathbf{6}$	1 pc. RST-S 2NC / M8 plug
$\mathbf{7}$	2 pc. RST-S 2NC / M8 plug

82 pc. RST-S 2NC,
1 pc. RST-S 2NO / M8 plug
A 1 pc. EST-S NPN / M8 plug
B 2 pc. EST-S NPN / M8 plug
C 3 pc. EST-S NPN / M8 plug
D 1 pc. EST-S PNP / M8 plug
E 2 pc. EST-S PNP / M8 plug
F 3 pc. EST-S PNP / M8 plug

Profile Mounting ${ }^{\text {* }}$	
$\mathbf{0}$	without
$\mathbf{1}$	1 Pee page 147 ff
$\mathbf{2}$	1 Pair Type E1
$\mathbf{3}$	1 Pair Type D1 MAE
$\mathbf{4}$	2 Pair Type 1
$\mathbf{5}$	2 Pair Type D1
$\mathbf{6}$	2 Pair Type MAE
$\mathbf{7}$	3 Pair Type 1
$\mathbf{8}$	3 Pair Type D1
$\mathbf{9}$	3 Pair Type MAE
A	4 Pair Type 1
B	4 Pair Type D1
\mathbf{C}	4 Pair Type MAE

End Cap Mounting * see page 141 ff

$\mathbf{0}$	without
A	1 pair Type CN
B	1 pair Type CO

Accessories - please order separately	
Description	Page
Motor Mountings	135
Multi-Axis Systems for Actuators	177 ff

[^0]: ${ }^{1)}$ Note: The mounting holes for the coupling housing / motor flange / gearbox are located on the opposite side to the carrier (motor mounting standard). They also can be located on the same side as the carrier (motor mounting 180° standard).

[^1]: * Option

