OSP-E..BHD Belt Actuator with Integrated Guide

Ball Bearing Guide Roller Guide

Content

Description	Page
Overview	12
Versions with Ball Bearing Guide	
Technical Data	15
Dimensions	18
Order Instructions	24
Version with Roller Guide	
Technical Data	20
Dimensions	23
Order Instructions	24

Belt Actuator with Integrated Guide for Heavy Duty Applications

The latest generation of high capacity actuators, the OSP-E..BHD series combines robustness, precision and high performance. The aesthetic design is easily integrated into any machine constructions by virtue of extremely adaptable mountings.

Belt Actuator with Integrated Guide - selective with Ball Bearing Guide or Roller Guide

Pneumatic Division - Europe

Parker Hannifin Corporation Pneumatic Division - Europe

OSP-E..BHD Belt Actuator with Integrated Guide

Standard Versions Accessories OSP-E..BHD Options Motor Mountings Standard carrier with integrated guide and Tandem For higher moment support magnets for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself. Ð **End Cap Mounting** For mounting the actuators on the end cap. P (D) **Bi-parting Version Drive Shaft with Clamp Shaft Profile Mounting** For perfectly synchronised For supporting long actuators or bi-parting movements. mounting the actuators on dovetail grooves R **Drive Shaft with Plain Shaft Drive Shaft with Clamp and Plain Shaft** Magnetic Sensors Type RS / ES For connections with intermediate drive For contactless position sensing of end shaft stop and intermediate carrier positions. R R **Actuating Direction** Hollow Shaft with Keyway Multi-Axis-Systems Important in parallel operations, e.g. For close coupling of motors and external For modular assembly of actuators up with intermediate drive shaft gears to multi-axis systems. Standard Ð **Integrated Planetary Gearbox** For compact installation and very low backlash Standard bi-parting Version ŧ

Standard Versions

- Belt Actuator with Integrated Ball Bearing Guide
- Drive Shaft with Clamp Shaft or Plain Shaft
- Choice of Motor Mounting Side
- Dovetail Profile for Mounting of Accessories and the Actuator itself

Options

- Tandem Version for Higher Moments
- Bi-parting Version for Synchronised Movements
- Integrated Planetary Gearbox
- Drive Shaft with
- Clamp Shaft and Plain Shaft
- Hollow Shaft with Keyway
- Special Drive Shaft Versions on Request

Characteristics

		Symbol	Unit	Description
Gene	ral Features			
Serie	S			OSP-EBHD
Name	9			Belt Acutator with Integrated Ball Bearing Gear
Mour	iting			see drawings
Ambi	ent Temperature Range	$artheta_{min} \ artheta_{max}$	°C °C	-30 +80
Weigl	nt (mass)		kg	see table
Instal	lation			in any position
	Slotted profile			Extruded Anodized Aluminium
	Belt			Steel-corded Polyurethane
	Pulley			Aluminium
	Guide			Ball Bearing Guide
ସ	Guide Rail			Hardened Steel Rail with High Precision, Accuracy Class N
Materi	Guide Carrier			Steel Carrier with Integrated Wiper System, Grease Nipples, Preloaded 0.02 x C, Accuracy Class H $$
	Sealing Band			Hardened, Corrision Resistant Steel
	Screws, Nuts			Zinc Plated Steel
	Mountings			Zinc Plated Steel and Aluminium
Prote	ction Class		IP	54

Weight (mass) and Inertia

Series	Weight (I	mass) [kg]		Inertia [x 10 ⁻⁶ kgm²]			
	at stroke 0 m	add per metre stroke	moving mass	at stroke 0 m	add per metre stroke	per kg mass	
OSP-E20BHD	2.8	4.0	0.8	280	41	413	
OSP-E25BHD	4.3	4.5	1.5	1,229	227	821	
OSP-E32BHD	8.8	7.8	2.6	3,945	496	1459	
OSP-E50BHD	26.0	17.0	7.8	25,678	1,738	3,103	
OSP-E20BHD*	4.3	4.0	1.5	540	41	413	
OSP-E25BHD*	6.7	4.5	2.8	2,353	227	821	
OSP-E32BHD*	13.5	7.8	5.2	7,733	496	1,459	
OSP-E50BHD*	40.0	17.0	15.0	49,180	1,738	3,103	

*Version: Tandem and Bi-parting (Option)

Installations Instructions

Use the threaded holes in the end cap for mounting the actuator. Check if profile mountings are needed using the maximum allowable unsupported length graph on page 17. At least one end cap must be secured to prevent axial sliding when profile mountings are used.

Maintenance

Depending on operating conditions, inspection of the actuator is recommended after 12 months or 3000 km operation. Please refer to the operating instructions supplied with the actuator.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/EG.

Sizing of Actuator

The following steps are recommended:

- 1. Determination of the lever arm length I_x , I_y and I_z from m_e to the centre axis of the actuator.
- 2. Calculation of the load F_x or F_y to the carrier caused by m_e $F=m_e\cdot g$
- 3. Calculation of the static and dynamic force F_A which must be transmitted by the belt. $F_{A(horizontal)} = F_a + F_0$

$$F_{A(vertical)} = F_g + F_a + F_0$$
$$= m_g \cdot g + m_g \cdot a + M_0 \cdot 2\pi / U_{ZR}$$

- 4. Calculation of all static and dynamic moments M_x , M_y and M_z which occur in the application. $M = F \cdot I$
- 5. Selection of maximum permissible loads via Table T3.
- 6. Calculation and checking of the combined load, which must not be higher than 1.
- 7. Checking of the maximum torque that occurs at the drive shaft in Table T2.
- 8. Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

- distance of a mas s in the x-, y- and z-direction from the guide [m]
- m_e = external moved mass [kg]
- m_{LA} = moved mass of actuator [kg]

 $m_g = total moved mass$ $(m_e + m_{LA}) [kg]$

- $F_{x/y} \ = \ load \ excerted \ on \ the \ carrier \\ in \ dependence \ of \ the \ installation \\ position \ [N]$
- F_A = action force [N]
- $M_0 =$ no-load torque [Nm]
- U_{ZR} = circumference of the pulley (linear movement per revolution) [m]
- g = gravity [m/s²]
- a_{max.} =maximum acceleration [m/s²]

Performance Overview

	\sim	
ſ	Τ1)
L		1

Characteristic	s	Unit		Desci	ription	
Series			OSP-E20BHD	OSP-E25BHD	OSP-E32BHD	OSP-E50BHD
Max. Speed	[m/s]	31)	5 ¹⁾	5 ¹⁾	5 ¹⁾	
Linear Motion pe of Drive Shaft	[mm]	125	180	240	350	
Max. rpm on Driv	[min ⁻¹]	2,000	1,700	1,250	860	
Max. Effective	< 1 m/s:	[N]	550	1,070	1,870	3,120
Action Force	1-3 m/s:	[N]	450	890	1,560	2,660
F _A at Speed	> 3 m/s:	[N]	-	550	1,030	1,940
No-load Torque		[Nm]	0.6	1.2	2.2	3.2
Max. Acceleration	n/Deceleration	[m/s ²]	50	50	50	50
Repeatability	[mm/m]	±0.05	±0.05	±0.05	±0.05	
Max. Standard S	troke Length	[mm]	5,760 ²⁾	5,700 ²⁾	5,600 ²⁾	5,500 ²⁾

¹⁾ up to 10 m/s on request

²⁾ longer strokes on request

Maximum Permissible Torque on Drive Shaft Speed / Stroke

															\sim
OSP-E20BHD				OSP-E25BHD				OSP-E32BHD				OSP-E50BHD			
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]												
1	11	1	11	1	31	1	31	1	71	1	71	1	174	1	174
2	10	2	11	2	28	2	31	2	65	2	71	2	159	2	174
3	9	3	8	3	25)	3	31	3	59	3	60	3	153	3	138
4		4	7	4	23	4	25	4	56	4	47	4	143	4	108
5		5	5	5	22	5	(21)	5	52	5	38	5	135	5	89

Important:

The maximum permissible torque on the drive shaft is the lowest value of the speed- or stroke-dependent torque value.

Example above:

OSP-E25BHD, stroke 5 m, required speed 3 m/s from table T2 speed 3 m/s gives 25 Nm and stroke 5 m gives 21 Nm. Max. torque for this application is 21 Nm.

Maximum I	Maximum Permissible Loads											
Series	ies Max. Applied Load Max.				Nm]							
	F _y [N]	F _z [N]	M_{x}	My	Mz							
OSP-E20BHD	1,600	1,600	21	150	150							
OSP-E25BHD	2,000	3,000	50	500	500							
OSP-E32BHD	5000	10,000	120	1,000	1,400							
OSP-E50BHD	12,000	15,000	180	1,800	2,500							

Loads, Forces and Moments

Combined Loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

Maximum Permissible **Unsupported Length**

Stroke Length

The stroke lengths of the actuators are available in multiples of 1 mm up to 5,700 mm.

Other stroke lengths are available on request. The end of stroke must not be used as a mechanical stop.

Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm.

The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo systems. For advice, please contact your local Parker technical support department.

* For Bi-parting version the max. load (F) is the total load of both carriers

 $F = F_{carrier 1} + F_{carrier 2}$

k = Max. permissible distance between mountings/Profile Mounting for a given load F.

When loadings are below or up to the curve in the graph below the deflection will be max. 0.01 % of distance k.

Equation of Combined Loads

The total of the loads must not exceed >1 under any circumstances.

 $M = F \cdot I [Nm]$ $M_x = M_x _{static} + M_x _{dynamic}$

The distance (I_x, I_y, I_z) for calculation of moments relates to the centre axis of the actuator. Bending moments are calculated from the centre of the actuator and E indicates actual force.

Maximum Permissible Unsupported Length – Placing of Profile Mounting

OSP-E..BHD Linear Drive with Toothed Belt and Integrated Recirculating Ball Bearing Guide - Basic Unit

* Note: The mechanical end position must not be used as a mechancial end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm. Order stroke = required travel + 2 x safety distance. The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local Parker representative.

Option Tandem - Series OSP-E.. BHD

** Order stroke = required travel + KM min + 2 x safety distance

Option - Bi-Parting - Series OSP-E.. BHD

A		Α		
-	Travel	KM (min)	Travel	
╹ _{┢┚} ══╧╸				

Dimension Table [mm]

Series	Α	В	С	Е	GxH	J	К	М	S	۷	х	YxZZ	CE	CF	EC	EF	FB
OSP-E20BHD	185	76.5	73	18	M5x8.5	155	21.1	27.6	67	51	30	M5x8	38	49.0	60	27	73
OSP-E25BHD	218	88.0	93	25	M5x10	178	21.5	31.0	85	64	40	M6x8	42	52.5	79	27	92
OSP-E32BHD	262	112	116	28	M6x12	218	28.5	38.0	100	64	40	M6x10	56	66.5	100	36	116
OSP-E50BHD	347	147	175	18	M6x12	288	43.0	49.0	124	90	60	M6x10	87	92.5	158	70	164

Series	FH	KF	KM _{min}	KM _{empf.}	KN	ко	KP	KR	KS	КТ	KUxKJ
OSP-E20BHD	36.0	42.5	180	220	27	18.0	25	12 _{h7}	12 ^{H7}	65.7	M6x8
OSP-E25BHD	39.5	49.0	210	250	34	21.7	30	16 _{h7}	16 ^{H7}	82.0	M8x8
OSP-E32BHD	51.7	62.0	250	300	53	30.0	30	22 _{h7}	22 ^{H7}	106.0	M10x12
OSP-E50BHD	77.0	79.5	354	400	75	41.0	35	32 _{h7}	32 ^{H7}	144.0	M12x19

(Other dimensions for KS and KB for special drive shafts on request – see order instructions.)

Features

- Highly Compact and Rigid Solutio Fully Integrated in the Drive Cap Housing
- Purpose Designed for the BHD Series.
- Available with three Standard Ratios (3, 5 and 10)
- Very Low Backlash
- Wide Range of Available Motor Flanges

Material: Aluminium (AL-H) / Steel (St-H)

Standard Version:

Gearbox on Opposite Side to Carrier

Note: When ordering, specify model/Type of motor and manufacturer for correct motor flange.

Please contact your local Parker technical support for available motor flange.

Series OSP-E..BHD – with Integrated Planetary Gearbox (Option)

Dimensions

Performance Overview

Characteristics	Symbol	Unit		Description	
Series			OSP-E25BHD	OSP-E32BHD	OSP-E50BHD
Ratio (1-stage)	i			3/5/10	
Max. Axial Load	F _{a max}	[N]	1,550	1,900	4,000
Torsional Rigidity (i=5)	C _{t.21}	[Nm/arcmin]	3.3	9.5	25.0
Torsional Rigidity (i=3/10)	C _{t.21}	[Nm/arcmin]	2.8	7.5	22.0
Torsional Backlash	J _t	[arcmin]		<12	
Linear Motion per Revolution of Drive Shaft		[mm]	220	280	360
Nominal Input Speed	n _{nom}	[min ⁻¹]	3,700	3,400	2,600
Max. Input Speed	n _{1max}	[min ⁻¹]		6,000	
No-load Torque at Nominal Input Speed	T ₀₁₂	[Nm]	<0.14	<0.51	<1.50
Lifetime		[h]		20,000	
Efficency	η	[%]		>97	
Noise Level (n ₁ =3000 min ⁻¹)	L _{PA}	[db]	<70	<72	<74

Dimension Table [mm] and Additional Weight

Series	NA	NB	NC	Weight (mass) [kg]
OSP-E25BHD	49	43	76	2.6
OSP-E32BHD	62	47	92	4.9
OSP-E50BHD	80	50	121	9.6

Parker Hannifin Corporation Pneumatic Division - Europe

Standard Versions

- Belt Acutator with Integrated Roller Guide
- Drive Shaft with Clamp Shaft or Plain Shaft
- Choice of Motor Mounting Side
- Dovetail Profile for Mounting of Accessories and the Actuator Itself

Options

- Tandem Version for Higher Moments
- Bi-parting Version for Synchronised Movements
- Integrated Planetary Gearbox
- Drive shaft with
- clamp shaft and plain shaft
- hollow shaft with keyway
- Special Drive Shaft Versions on Request

Characteristics

		Symbol	Unit	Description
Gene	ral Features			
Serie	S			OSP-EBHD
Name				Linear Drive with Toothed Belt and Integrated Roller Guide
Mour	iting			see drawings
Ambient Temperature Range		$artheta_{min} \ artheta_{max}$	°C °C	-30 +80
Weig	ht (mass)		kg	see table
Installation				in any position
	Slotted Profile			Extruded Anodized Aluminium
	Toothed Belt			Steel-corded Polyurethane
	Pulley			Aluminium
	Guide			Roller Guide
ସ	Guide Rail			Aluminium
ateri	Track			High Alloyed Steel
Š	Roller Cartige			Steel rollers in Aluminium Housing
	Sealing Band			Hardended, Corrision Resistant Steel
	Screws, Nuts			Zinc Plated Steel
	Mountings			Zinc Plated Steel and Aluminium
Protection Class			IP	54

Weight (mass) and Inertia

Series	Wei	ght (mass)	[kg]	Inertia [x 10 ⁻⁶ kgm ²]				
	at stroke 0 m	ad per metre stroke	Moving mass	at stroke 0 m	ad per metre stroke	Moving mass		
OSP-E25BHD	3.8	4.3	1.0	984	197	821		
OSP-E32BHD	7.7	6.7	1.9	3,498	438	1,459		
OSP-E50BHD	22.6	15.2	4.7	19,690	1,489	3,103		
OSP-E25BHD*	ID* 5.7 4.3 2.0		2.0	1,805	197	821		
OSP-E32BHD*	11.3	6.7	3.8	6,358	438	1,459		
OSP-E50BHD*	31.7	15.2	9.4	34,274	1,489	3,103		

* Version: Tandem and Bi-parting (Option)

Installation Instructions

Use the threaded holes in the end cap for mounting the actuator. Check if profile mountings are needed using the maximum allowable unsupported length graph on page 22. At least one end cap must be secured to prevent axial sliding when profile mountings are used.

Maintenance

Depending on operating conditions, inspection of the actuator is recommended after 12 months or 3000 km operation. Please refer to the operating instructions supplied with the actuator.

First Service Start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the EC Machine Directive 2006/42/ EG.

(T1

T2

Performance Overview

Characteristics		Symbol		Description	I
Series		OSP-E25BHD	OSP-E32BHD	OSP-E50BHD	
Max. Speed		[m/s]	10	10	
Linear Motion per Revo Shaft	[m/s]	180	350		
Max. rpm. Drive Shaft	[min ⁻¹]	3,000	2,500	1,700	
	< 1 m/s:	[N]	1,070	1,870	3,120
Max. Effective Action	1-3 m/s:	[N]	890	1,560	2,660
roloc r _A at opeca	> 3-10 m/s:	[N]	550	1,030	1,940
No-load Torque		[Nm]	1.2	2.2	3.2
Max. Acceleration/Dec	eleration	[m/s ²]	40	40	40
Repeatability	[mm/m]	±0.05	±0.05	±0.05	
Max. Standard Stroke I	_ength	[mm]	7,000	7,000	7,000

Maximum Permissible Torque on Drive Shaft Speed and Stroke

	OSP-E	25BHD		OSP-I	E32BHD)		OSP-E50BHD				
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	
1	31	1	31	1	71	1	71	1	174	1	174	
2	28	2	31	2	65	2	71	2	159	2	174	
3	25	3	31	3	59	3	60	3	153	3	138	
4	23	4	25	4	56	4	47	4	143	4	108	
5	22	5	2D	5	52	5	38	5	135	5	89	
6	21	6	17	6	50	6	32	6	132	6	76	
7	19	7	15	7	47	7	28	7	126	7	66	
8	18			8	46			8	120			
9	17			9	44			9	116			
10	16			10	39			10	108			

Important:

The maximum permissible torque on the drive shaft is the lowest value of the speed- or strokedependent torque value.

Example above:

OSP-E25BHD, stroke 5 m, required speed 3 m/s from table T2 speed 3 m/s gives 25 Nm and stroke 5 m gives 21 Nm. Max. torque for this application is 21 Nm.

Maximum Permissible Loads								
Series	Max. applied load	Max. moments [Nm]						
	F _y , F _z [N]	M _x	My	Mz				
OSP-E25BHD	986	11	64	64				
OSP-E32BHD	1,348	19	115	115				
OSP-E50BHD	3,704	87	365	365				

Sizing of Actuator

The following steps are recommended:

- 1. Determination of the lever arm length I_x , I_y and I_z from m_e to the centre axis of the actuator.
- 2. Calculation of the load F_x or F_y to the carrier caused by m_e F = $m_e \cdot g$
- 3. Calculation of the static and dynamic force F_A which must be transmitted by the belt. $F_{A(horizontal)} = F_a + F_0$

$$\begin{array}{rcl} \text{(horizontal)} &= & \Gamma_a + \Gamma_0 \\ &= & m_g \cdot a + M_0 \cdot 2\pi \ / \ U_{ZR} \end{array}$$

$$\begin{array}{ll} \mathsf{F}_{A(\text{vertical})} & = \mathsf{F}_g + \mathsf{F}_a + \mathsf{F}_0 \\ & = \mathsf{m}_g \cdot g + \mathsf{m}_g \cdot a + \mathsf{M}_0 \cdot 2\pi \: / \: \mathsf{U}_{ZR} \end{array}$$

- 4. Calculation of all static and dynamic bending moments M_x , M_y and M_z which occur in the application $M = F \cdot I$
- 5. Selection of maximum permissible loads via Table T3.
- 6. Calculation and checking of the combined load, which must not be higher than 1.
- 7. Checking of the maximum torque that occurs at the drive shaft in Table T2.
- 8. Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

L

- distance of a mass in the x-, y- and z-direction from the guide [m]
- m_e = external moved mass [kg]
- m_{LA} = moved mass of actuator [kg]
- $m_g = total moved mass$ $(m_e + m_{LA}) [kg]$
- $F_{x/y}$ = load excerted on the carrier in dependence of the installation position [N]
- F_A = action force [N]
- M₀ = no-load torque [Nm]
- U_{ZR} = circumference of the pulley (linear movement per revolution) [m]
- $g = gravity [m/s^2]$
- a_{max.} =maximum acceleration [m/s²]

Loads, Forces and Moments

Combined Loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

Maximum Permissible Unsupported Length

Stroke length

The stroke lengths of the actuators are available in multiples of 1 mm up to 5700 mm.

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.

Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm.

The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo systems.

For advice, please contact your local Parker technical support department.

- * For the bi-parting version the maximum load (F) complies with the total of the load at both carriers. $F = F_{carriage 1} + F_{carriage 2}$
- k = Maximum permissible distance between mountings/mid-section support for a given load F.

If the loads are below or up to the curve in the graph the deflection will be max. 0.01 % of distance k.

Equation of Combined Loads

Fy	Fz	Mx	Му	Mz ∠1
Fy (max)	Fz (max)	Mx (max)	My (max)	Mz (max)

The total of the loads must not exceed >1 under any circumstances.

 $\begin{aligned} \mathsf{M} &= \mathsf{F} \cdot \mathsf{I} \; [\mathsf{N}\mathsf{M}] \\ \mathsf{M}_{x} &= \mathsf{M}_{x} \; {}_{\text{static}} + \mathsf{M}_{x} \; {}_{\text{dynamic}} \\ \mathsf{M}_{y} &= \mathsf{M}_{y} \; {}_{\text{static}} + \mathsf{M}_{y} \; {}_{\text{dynamic}} \\ \mathsf{M}_{z} &= \mathsf{M}_{z} \; {}_{\text{static}} + \mathsf{M}_{z} \; {}_{\text{dynamic}} \end{aligned}$

The distance (I_x, I_y, I_z) for calculation of moments relates to the centre axis of the actuator. Bending moments are calculated from the centre of the actuator and F indicates actual force.

Maximum Permissible Unsupported Length – Placing of Profile Mounting

Parker Hannifin Corporation Pneumatic Division - Europe

Linear Drive with Toothed Belt and Integrated Roller Guide - Basic Unit OSP-E..BHD

"Note: The mounting holes for the coupling housing / motor flange / gearbox are located on the opposite side to the carrier (motor mounting standard). They also can be located on the same side as the carrier (motor mounting 180° standard).

* Note: The mechanical end position must not be used as a mechancial end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm. Order stroke = required travel + 2 x safety distance. The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local Parker representative.

Option Tandem

OSP-E25BHD

OSP-E50BHD

22H7

32^{H7}

6

10

106

144

M10 x 12

M12 x 19

24.8

35.3

** Order stroke = required travel + KM min + 2 x safety distance

Option - Bi-Parting

*** Order stroke = 2 x required travel + KM min + 2 x safety distance

Dimension Table [mm]

Sarias	•	P	<u>^</u>	F			K	M	e	v	v	V ₂ 77	CE	CE
Series	A	D	U	_	бхп	J	<u> </u>	IVI	3	v	^	1722	UE	UF
OSP-E25BHD	218	88.0	93	25	M5x10	178	21.5	31.0	85	64	40	M6x8	42	52.5
OSP-E32BHD	262	112	116	28	M6x12	218	28.5	38.0	100	64	40	M6x10	56	66.5
OSP-E50BHD	347	147	175	18	M6x12	263	43.0	49.0	124	90	60	M6x10	87	92.5
Series	EC	EF	FB	FH	KF	KM _{min}	KM _{empf.}	KN	ко	KP	KR	KS	КТ	KUxKJ
OSP-E25BHD	79	27	92	39.5	49.0	210	250	34	21.7	30	16 _{h7}	16 ^{H7}	82.0	M8x8
OSP-E32BHD	100	36	116	51.7	62.0	250	300	53	30.0	30	22 _{h7}	22 ^{H7}	106.0	M10x12
OSP-E50BHD	158	70	164	77.0	79.5	295	350	75	41.0	35	32 _{h7}	32 ^{H7}	144.0	M12x19

Other dimensions for KS and KB for special drive shafts on request - see other instructions.

P-A4P017GB **OSP-E**

Or	Order Instructions		-	6	0	0	02	-	00	000	_	0	00	0	0	0	
Size	of Actuator																
20	Size 20 (only Type of actuator 6)														L		
25	Size 25	-															
32	Size 32	-															
50	Size 50	-															
		_						_									
Туре	of Actuator								Order	stroke	e						
5	Belt Actuator with Integrated Roller Guide (for size 25, 32 and 50)								5 digits	input ir	n mm						
6	Belt Actuator with Integrated Ball Bearing								Drive	Choft	0			-4			
								-	Drive	Snatt	Spe	eciai di	rive sn	aπ on	reque	est (8,	'9)
Carr	iage]						-	iviotor r	nountin	g posr	tion se	e M				\equiv
0	Standard	-							0 A 0	Plain S	Shaft						
1*	Tandem	-						-							!	N	_
2*	Bi-parting								0 B	Plain Shaft					_		
Ope	rating Direction]							0 2	Clamp	Shaft				•	0	╡
0	Standard right								0 3*	Clamp	Shaft	with F	Plain Sl	haft	ا ۹		≡
1	Standard left								0 4	Clamp	Shaft						
2	Bi-parting right								0 5*	Clamp	Shaft	with F	Plain Sl	haft			
	Bi-parting left	-							0 6*	Hollow	/ Shaft	with I	Keywa	У	l	M	
3									0 7*	Hollow	/ Shaft	with I	Keywa	У	Í		
									Integr	ated G	iear *	r					
OSP	-E BHD as Parallel Actuator								1 x**	Ratio i=	=3						
with OSP	Intermediate Drive Shaft MAS -E60005 M								2 x**	Rratio i	=5					м	
	0								3 x**	Ratio i=	=10						

OSP-E60 0 0 5 OSP-E60 1 0 A	M	
OSP-E60 0 0 3 OSP-E60 1 0 B	M	
<u>↑</u>	Drive shaft Operating direc	tion

Parker

М

Π

4 x**

5 x**

6 x**

Ratio i=3

Ratio i=5

Ratio i=10

Mounting Kit for Gear *								
Size		20	25	32	50			
A7	PS60	X 2	X 1					
A 8	PS90			X 1				
A9	PS115				X 1			
C0	LP050 / PV40-TA	x 1						
C1	LP070 / PV60-TA	x 2	x 1					
C2	LP090 / PV90-TA			X 1				
C3	LP120				x 1			

x ¹: Kit for **Drive Shaft** with clamp shaft (02 / 03 / 04 / 05)

x ²: Kit for **Drive Shaft** with plain shaft (0A / 0B)

Info: Motor and gear mounting dimensions see page 191

 Niro	
0	Standard
1*	Niro Screws

* Option ** for sizes 25, 32 and 5

Magn	etic Sensors *	see page 165 ff					
0	without						
1	1 pc. RST-K 2NO / 5 m cable						
2	1 pc. RST-K 2NC / 5 m cable						
3	2 pc. RST-K 2NC / 5 m cat	ble					
4	2 pc. RST-K 2NC, 1 pc. RST-K 2NO / 5 m cable						
5	1 pc. RST-S 2NO / M8 plug						
6	1 pc. RST-S 2NC / M8 plug						
7	2 pc. RST-S 2NC / M8 plug						
8	2 pc. RST-S 2NC, 1 pc. RST-S 2NO / M8 plug]					
Α	1 pc. EST-S NPN / M8 plug	J					
В	2 pc. EST-S NPN / M8 plug	J					
С	3 pc. EST-S NPN / M8 plug	J					
D	1 pc. EST-S PNP / M8 plug						
Е	2 pc. EST-S PNP / M8 plug						
F	3 pc. EST-S PNP / M8 plug						

Profil	e Mounting *	see page 147 ff
0	without	
1	1 Pair Type E1	
2	1 Pair Type D1	
3	1 Pair Type MAE	
4	2 Pair Type 1	
5	2 Pair Type D1	
6	2 Pair Type MAE	
7	3 Pair Type 1	
8	3 Pair Type D1	
9	3 Pair Type MAE	
Α	4 Pair Type 1	
В	4 Pair Type D1	
С	4 Pair Type MAE	

End Cap Mounting *		see page 141 ff
0	without	
Α	1 pair Type CN	
В	1 pair Type CO	

Accessories - please order separately			
Page			
135			
177 ff			