Linear Drive with Toothed Belt Series OSP-E..B

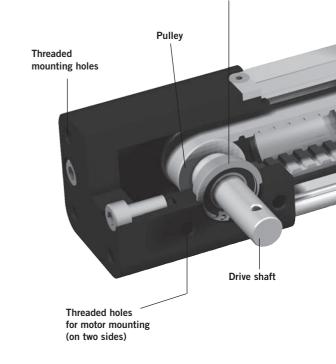
Contents

Description	DataSheet No.	Page
Overview	1.20.001E	35-38
Technical Data	1.20.002E-1 to 5	39-43
Dimensions	1.20.002E-6	44-45
Order Instructions	1.20.002E-7	46

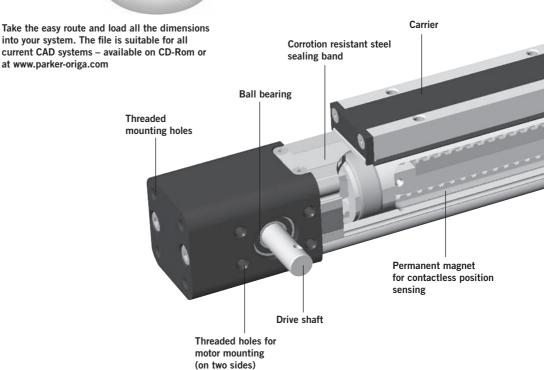
The System Concept

ELECTRIC LINEAR DRIVE FOR POINT-TO-POINT APPLICATIONS

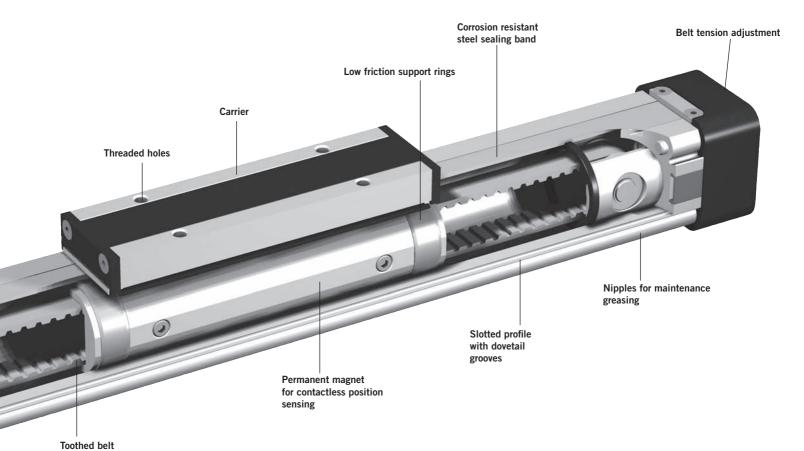
A completely new generation of linear drives which can be integrated into any machine layout neatly and simply.

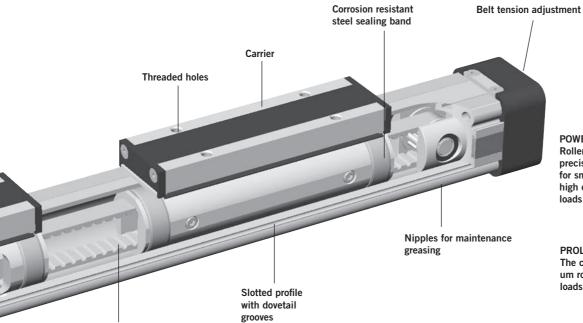

Linear Drive with Toothed Belt and internal Plain Bearing Guide

Advantages


- Precise path and position control
- High speed operation
- **■** Easy installation
- **■** Low maintenance
- Ideal for precise point-topoint applications

Features


- Integrated drive and guidance system
- Tandem configuration with increased carrier distance for higher moment supports
- Long available strokes
- Complete motor and control packages
- Diverse range of accessories and mountings
- Bi-parting and special options available

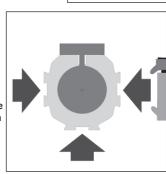


Ball bearing

at www.parker-origa.com

POWERSLIDE Roller bearing precision guidance for smooth travel and high dynamic or static loads.

PROLINE
The compact aluminium roller guide for high loads and velocities.



Tandem configuration with increased carrier distance for higher moment supports. Bi-parting version for precise synchronized movements

The dovetailed mounting rails of the new linear drive expand its function into that of a universal system carrier.

Modular system components are simply clamped on.

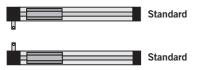
Toothed belt

Accessories

OPTIONS AND ACCESSORIES

SERIES OSP-E, LINEAR DRIVE WITH TOOTHED BELT AND INTERNAL PLAIN BEARING GUIDE

STANDARD VERSIONS OSP-E..B


Data sheets 1.20.002E-1, -2

Carrier with internal guidance and magnet packet for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

DRIVE SHAFT VERSIONS

- Plain shaft or
- double plain shaft (Option) e.g. to drive two linear drives in parallel.

OPTIONS

Data sheet 1.20.002E-1, -2 For higher moment support.

ACCESSORIES

MOTOR MOUNTING Data sheet 1.44.006E-4

END CAP MOUNTING

Data sheet 1.44.010E-3 For end-mounting of the drive.

MID-SECTION SUPPORT

Data sheet 1.44.010E-8 For supporting long drives or mounting the linear drive on the dovetail grooves.

CLEVIS MOUNTING Data sheet 1.44.010E-13,-14

Carrier with tolerance and parallelism compensation to drive external linear guides.

INVERSION MOUNTING

Data sheet 1.44.010E-15 The inversion mounting, mounted on the carrier, transfers the driving force to the opposite side, e.g. for dirty environments.

MAGNETIC SWITCHES SERIES RS AND ES

Data sheet 1.44.030E For contactless position sensing of end stop and intermediate carrier positions.

The right to introduce technical modifications is reserved

Characteristics								
Cha	racteristics	Symbol	Unit	Description				
Gen	eral Features							
Seri	es			OSP-EB				
Nan	ne			Linear Drive with Toothed Belt				
Mou	nting			See drawings				
Temperature range		$artheta_{ ext{min}}^{ ext{9}_{ ext{min}}}$	°C	-30 +80				
Weight (mass)			kg	See table				
Inst	allation			See table				
	Slotted profile			Extruded anodized aluminium				
	Toothed belt			Steel-corded polyurethane				
a	Pulley			Aluminium				
Material	Guide bearings			Low friction plastic				
\mathbb{M}	Sealing band			Hardened corrosion resistant steel				
Screws, nuts				Zinc plated steel				
Mountings				Zinc plated steel and aluminium				
Enc	apsulation class	IP	54					

Weight (mass) and Inertia								
Series	at stroke 0 m	Weight (mass) [ad per meter stroke		Inertia [x 10 ⁻⁶ kg at stroke 0 m	gm²] ad per meter stroke			
OSP-E25B	0.9	1.6	0.2	25.3	6.6			
OSP-E32B	1.9	3.2	0.40	43.3	10			
OSP-E50B	5.2	6.2	1.0	312.2	45			
OSP-E25B*	1.2	1.6	0.5	48	6.6			
OSP-E32B*	2.3	3.2	0.8	83	10			
OSP-E50B*	6.3	6.2	2.1	585	45			

^{*} Version: Tandem and Bi-parting (Option)

Installation Instructions

Use the threaded holes in the end cap for mounting the linear drive. See if mid-section supports are needed using the maximum allowable unsupported length graph on data sheet 1.20.002E-3

At least one end cap must be secured to prevent axial sliding when midsection support is used.

When the linear drive is moving an externally guided load, the clevis mounting must be used (see on data sheet 1.44.010E-13,-14).

The linear drives can be fitted with the standard carrier mounting facing in any direction.

To prevent contamination such as fluid ingress, the drive should be fitted with its sealing band facing downwards. The inversion mounting can be fitted to transfer the driving force to the opposite side (see on data sheet 1.44.010E-15).

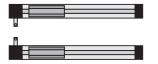
Maintenance

All moving parts are long-term lubricated for a normal operational environment. Parker Origa recommends a check and lubrication of the linear drive, and if necessary a change of the toothed belt and wear parts, after an operation time of 12 months of operation or

3 000 km travel of distance. Additional greasing is easily done by using nipples in the slotted profile. Please refer to the operating instructions supplied with the drive.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the linear drive machine into service, the user must ensure the adherence to the EC Machine Directive 91/368/EEC.


Linear guides see 1.40.020E to 024E Magnetic switches see 1.44.030E Mountings and accessories see 1.44.006E, 1.44.010E

Linear Drive with Toothed Belt Series OSP-E..B Size 25, 32, 50

Standard Versions:

- Standard carrier with internal plain bearing guide
- Dovetail profile for mounting of accessories and the actuator itself
- Position of Drive Shafts

Options:

- Tandem-Version
- Bi-parting version for synchronized movements
- Drive shaft with double plain shaft

Sizing Performance Overview Maximum Loadings

Sizing of Linear Drive

The following steps are recommended for selection:

- 1. Required acceleration is shown in graphs on data sheet 1.20.002-4E.
- 2. Required torque is shown on data sheet 1.20.002-5E.
- 3.Check that maximum values in the table 3 are not exceeded
- 4. Drive shaft by using table T2. (Pay attention to note under table) If value is lower than required, overview the moving profile or select if possible a bigger unit.
- 5. Before sizing and specifying the motor, the average torque must be calculated using the cycle time of the application.
- 6. Check that the maximum allowable unsupported length is not exceeded (see on data sheet 1.20.002-3E).

Performance Overview									
Characteristics		Unit	Description	Description					
Size			OSP-E25B	OSP-E32B	OSP-E50B				
Max. speed		[m/s]	2	3	5				
Linear motion p drive shaft	er revolution,	[mm]	60	60	100				
Max. rpm drive	shaft	[min ⁻¹]	2 000	3 000	3 000				
Max. effective	< 1 m/s:	[N]	50	150	425				
action force	1- 2 m/s:	[N]	50	120	375				
F _A at speed	> 2 m/s:	[N]	_	100	300				
No-load torque		[Nm]	0.4	0.5	0.6				
Max. acceleration	on/deceleration	[m/s ²]	10	10	10				
Repeatability		[mm/m]	±0.05	±0.05	±0.05				
Max. stroke leng	gth OSP-EB	[mm]	3000	5000	5000				
Max. stroke leng	gth OSP-EB*	[mm]	2 x 1500	2 x 2500	2 x 2500				

^{*} Bi-parting version

Maximum Permissible Torque on Drive Shaft Speed / Stroke								T2			
	OSP-I	E25B			OSP-I	E32B			OSP-	E50B	
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]
1 2	0.9 0.9	1 2 3	0.9 0.9 0.9	1 2 3	2.3 2.0 1.8	1 2 3 4 5	2.3 2.3 2.3 2.3 2.3 1.8	1 2 3 4 5	10.0 9.5 9.0 8.0 7.5	1 2 3 4 5	10.0 10.0 9.0 7.0 6.0

Important:

The maximum permissible moment on the drive shaft is the lowest value of the speed- or stroke-dependent moment value.

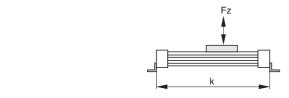
Example above:

OSP- \dot{E} 32B stroke 2 m, required speed 3 m/s; From table T2: speed 3 m/s gives 1.8 Nm and stroke 2 m gives 2.3 Nm. Max. torque for this application is 1.8 Nm.

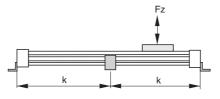
Marrianana Dama	Mayimum Daymiasikla Laada								
waximum Perm	Maximum Permissible Loads (T3)								
Series	Max. applied load Fz [N]	Max. mome Mx	nts [Nm] My	Mz					
OSP-E25B	160	2	12	8					
OSP-E32B	300	8	25	16					
OSP-E50B	850 16 80 32								
OSP-EB Bi-partional	The maximum load F must be equally distributed among the two carriers.								

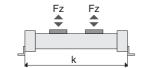
Forces, loads and moments						
1 F O I	Mz Mx					
$ \begin{aligned} M &= F \cdot I \text{ [Nm]} \\ M_x &= M_x \text{ stically} + M_x \text{ dynamically} \\ M_y &= M_y \text{ statically} + M_y \text{ dynamically} \\ M_z &= M_z \text{ statically} + M_z \text{ dynamically} \end{aligned} $	The distance I (lx, ly, lz) for calculation of moments relates to the centre axis of the linear drive.					

Combined Loads

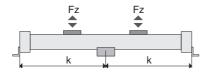

If the linear drive is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here

The maximum permissible loads must not be exceeded.

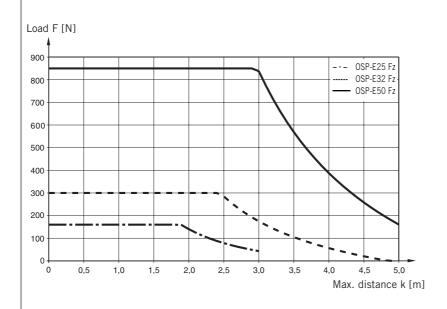

Equation for	Combined Loa	ds			
	Fz	Mx	My	Mz	
	+		++		≤ 1
	Fz (max)	Mx (max)	My (max)	Mz (max)	


The total of the loads must not exeed >1 under any circumstances.

Maximum permissible unsupported length - Placing of Mid-Section Support



Series OSP-E..B



Series OSP-E..B Bi-parting version

k = Maximum permissible distance between mountings/mid-section support for a given load F.

(Up to the curve in the above graph the deflection will be max. 0.2 % of distance k)

Maximum Permissible Unsupported Length

Stroke Length

The stroke lengths of the linear drives are available in multiples of 1 mm up to max.

OSP-E25B: 3 m / 2 x 1.5 m *

OSP-E32B: 5 m / 2 x 2.5 m *

OSP-E50B: 5 m / 2 x 2.5 m *

* Version: Bi-partional

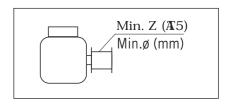
Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.

Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems.

For advise, please contact your local Parker Origa technical support department


When mechanical stops are required, external shock absorbers should be used (see separate data sheet). Align the centre line of the shock absorber as closely as possible with the object's centre of gravity (see separate data sheet).

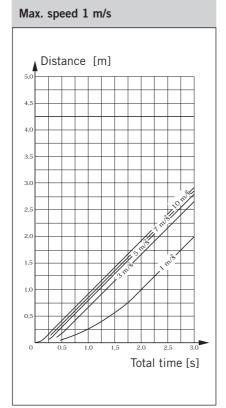
Mounting on the Drive Shaft

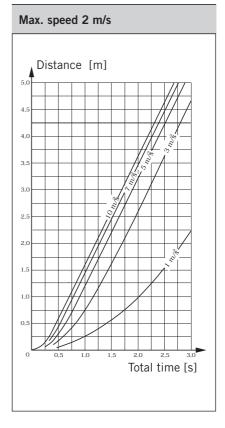
Do not expose the drive shaft to uncontrolled axial or radial forces when mounting coupler or pulley, a steadying block should be used.

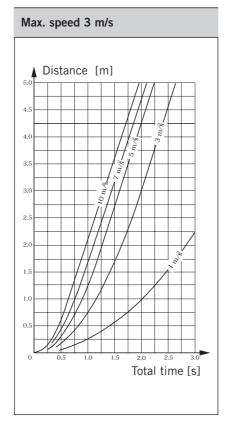
Pulley

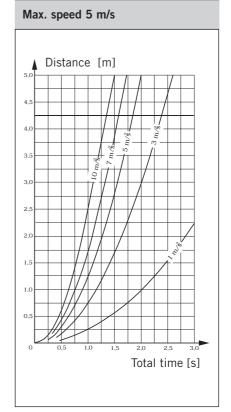
Minimum allowable number of teeth Z (AT5) at maximum applied torque.

Series	Min. Z	Min. ø
OSP-E25B	24	38
OSP-E32B	24	38
OSP-E50B	36	57

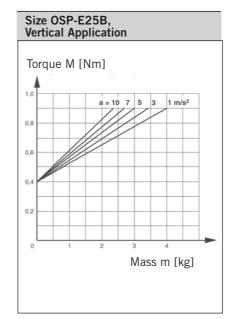

Required Acceleration

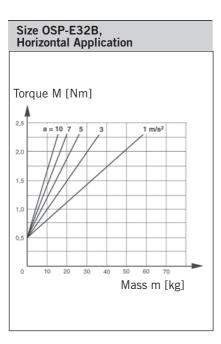

Distance / Time Graph

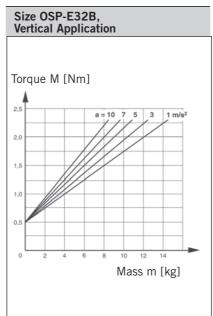

Using the required travel distance and total time, the adjacent graphs show the required acceleration based on maximum speed.


The graphs assume that acceleration and deceleration are equal.

Please note that specifying nonessential high acceleration or short cycle time will result in an oversized motor.

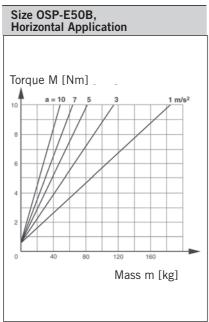


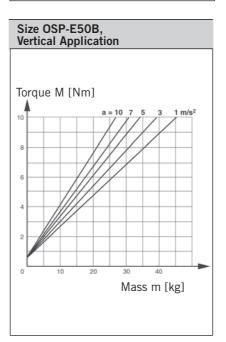

Size OSP-E25B, Horizontal Application Torque M [Nm] 0.8 0.6 0.4 0.2 0.4 0.2 0.8 Mass m [kg]

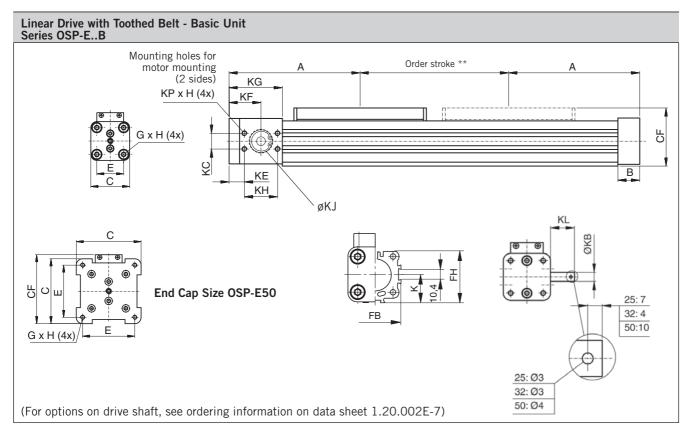


Required Torque / Mass

Using the known mass, the direction of the application and the required acceleration from the distance-time graphs, the linear drive can be sized and the required torque is shown in the adjacent graphs.

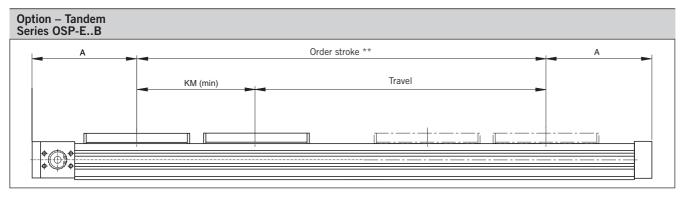

Mass in graphs = Load + moving mass of the linear drive (according to the weig ht chart on data sheet 1.20.002E-1).



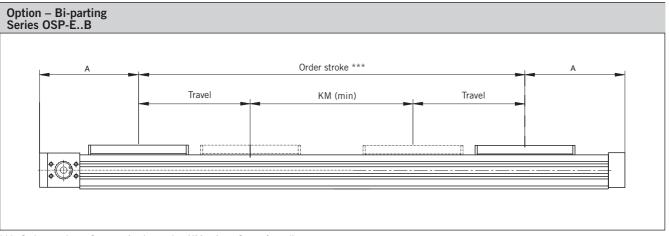


Please note:
When using an additional guide,
please add the mass of the carriage
to the total moving mass.

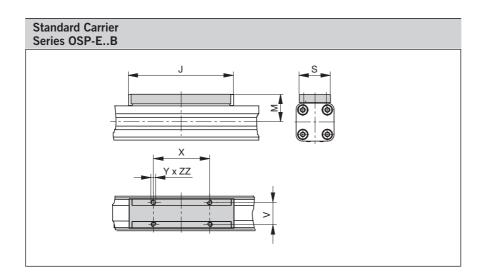
a M [Nm]



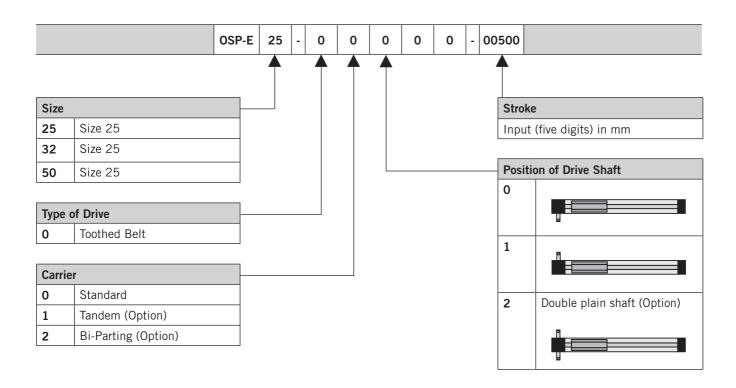
* Note


The mechanical end position must not be used as a mechanical end stop. Allow an additional safety clearance at both ends equivalent to the linear move ment of one revolution of the drive shaft, but at least 100 mm.

Order stroke = required travel + $2 \times \text{safety distance}$.


The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local Parker Origa representative.

** Order stroke = required travel + KM min + 2 x safety distance


*** Order stroke = 2 x required travel + KM min + 2 x safety distance

Dimension Ta	able [mı	m]											
Series	Α	В	С	E	G x H	J	K	М	S	٧	X	Υ	CF
OSP-E25B	125	22	41	27	M5 x 10	117	21.5	31	33	25	65	M5	52.5
OSP-E32B	150	25	52	36	M6 x 12	152	28.5	38	36	27	90	M6	66.5
OSP-E50B	200	25	87	70	M6 x 12	200	43	49	36	27	110	M6	92.5

Series	FB	FH	КВ	KC	KE	KF	KG	KH	KJ	KL	KM _{min}	KM _{empf.}	KP x H	ZZ
OSP-E25B	40	39.5	10 _{j6}	15	22	37	57	30	19 ^{H7}	24	130	190	M5 x 10	8
OSP-E32B	52	51.7	10 _{j6}	18	17.5	36.5	61	38	26 ^{H7}	26	170	230	M6 x 12	10
OSP-E50B	76	77	16 _{h8}	32	23.5	48.5	85	50	40 ^{H7}	34	220	320	M8 x 12	10

Order Instructions

If combined with a linear guide, please also state position of linear guide Position of Drive Shaft **Position of Drive Shaft** Position of Drive Shaft Standard = 0Opposite to Standard = 1 Both Sides = 2 **Position of Linear Guide Position of Linear Guide Position of Linear Guide** Standard Position of guide opposite to drive shaft Standard Standard Position of guide opposite to drive shaft Position of guide opposite to drive shaft Opposite to Standard Opposite to Standard Opposite to Standard Position of duide same as drive shaft Position of guide same as drive shaft Position of guide same as drive shaft

Accessories - please order separately

Accessories pieuse order separatery	
Description	For more Information see Data Sheet No.
Coupling Housing	1.44.006E-4
End Cap Mountings	1.44.010E-3
Mid-Section Support	1.44.010E-8
Adaptor Profile	1.44.010E-9
T-Slot Profile	1.44.010E-10
Clevis Mounting Clevis Mounting	1.44.010E-13,-14
Inversion Mounting	1.44.010E-15
Magnetic Switches	1.44.030E
Drive systems and components for electric linear drives OSP-E	A4P019E